Optimization of Tree Ensembles
نویسنده
چکیده
Tree ensemble models such as random forests and boosted trees are among the most widely used and practically successful predictive models in applied machine learning and business analytics. Although such models have been used to make predictions based on exogenous, uncontrollable independent variables, they are increasingly being used to make predictions where the independent variables are controllable and are also decision variables. In this paper, we study the problem of tree ensemble optimization: given a tree ensemble that predicts some dependent variable using controllable independent variables, how should we set these variables so as to maximize the predicted value? We formulate the problem as a mixed-integer optimization problem. We theoretically examine the strength of our formulation, provide a hierarchy of approximate formulations with bounds on approximation quality and exploit the structure of the problem to develop two large-scale solution methods, one based on Benders decomposition and one based on iteratively generating tree split constraints. We test our methodology on real data sets, including two case studies in drug design and customized pricing, and show that our methodology can efficiently solve large-scale instances to near or full optimality, and outperforms solutions obtained by heuristic approaches. In our drug design case, we show how our approach can identify compounds that efficiently trade-off predicted performance and novelty with respect to existing, known compounds. In our customized pricing case, we show how our approach can efficiently determine optimal store-level prices under a random forest model that delivers excellent predictive accuracy.
منابع مشابه
Relevant Ensemble of Trees
Tree ensembles are flexible predictive models that can capture relevant variables and to some extent their interactions in a compact and interpretable manner. Most algorithms for obtaining tree ensembles are based on versions of boosting or Random Forest. Previous work showed that boosting algorithms exhibit a cyclic behavior of selecting the same tree again and again due to the way the loss is...
متن کاملMixtures of Bagged Markov Tree Ensembles
Key points: •Trees → efficient algorithms. •Mixture → improved modeling. There are 2 approaches to improve over a single Chow-Liu tree: Bias reduction, e.g. EM algorithm [1] •Learning the mixture is viewed as a global optimization problem aiming at maximizing the data likelihood. •There is a bias-variance trade-off associated with the number of terms. • It leads to a partition of the learning s...
متن کاملDecision Tree Ensembles in Biomedical Time-Series Classification
There are numerous classification methods developed in the field of machine learning. Some of these methods, such as artificial neural networks and support vector machines, are used extensively in biomedical time-series classification. Other methods have been used less often for no apparent reason. The aim of this work is to examine the applicability of decision tree ensembles as strong and pra...
متن کاملPost-Learning Optimization of Tree Ensembles
Learning to Rank (LtR) is the machine learning method of choice for producing highly effective ranking functions. However, efficiency and effectiveness are two competing forces and trading off effectiveness for meeting efficiency constraints typical of production systems is one of the most urgent issues. This extended abstract shortly summarizes the work in [4] proposing CLEaVER, a new framewor...
متن کاملMulti-target regression with rule ensembles
Methods for learning decision rules are being successfully applied to many problem domains, in particular when understanding and interpretation of the learned model is necessary. In many real life problems, we would like to predict multiple related (nominal or numeric) target attributes simultaneously. While several methods for learning rules that predict multiple targets at once exist, they ar...
متن کاملCoherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.10883 شماره
صفحات -
تاریخ انتشار 2017